ON THE INVESTIGATION OF SUMMABLE
SERIES *

Leonhard Euler

§19 If the sum of a series, whose terms contain the variable quantity x, was
known, and which series will therefore be a function of x, then, whatever
value is attributed to x, one will always be able to assign the sum of the series.
Therefore, if one writes x + dx instead of x, the sum of the resulting series will
be equal to the sum of the first series and the differential: Hence it follows
that the differential of the sum will be = the differential of the series. Because
this way so the sum as each term will be multiplied by dx, if one divides by
dx everywhere, one will have a new series, whose sum will be known. In like
manner, if this series is differentiated again and is divided by dx, a new series
will result together with its sum and this way new likewise summable series
will be found from one summable series involving the variable quantity x, if
that series is differentiated several times.

§20 In order to understand all this more clearly, let the variable geometric
progression be propounded, whose sum is known; for,

1
m:1—|—x—|—x2+x3+x4+x5+x6+etc.

If this equation is now differentiated with respect to x, it will be

*Original title: “De Investigatione serierum summabilium”, first published as part of the
book , Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum,
1755”, reprinted in Opera Omnia: Series 1, Volume 10, pp. 235 - 255, Enestrom-Number E212,
translated by: Alexander Aycock for the , Euler-Kreis Mainz”



dx
(I—-x)?

and having divided by dx, one will have

= dx + 2xdx + 3x%dx + 4x3dx + 5x*dx + etc.,

1
m :1+2x+3x2+4x3+5x4+etc.

If one differentiates the last equation once more and divides by dx, this
equation will result

m:2+2~3x+3-4x2+4-5x3+5-6x4+etc.

or

1
AP = 14 3x + 6x% + 10x° + 15x* + 21x° + etc.

where the coefficients are the triangular numbers. If one differentiates once
again and divides by 3dx, one will obtain

1
(1—x)*
whose coefficients are the first pyramidal numbers. And, proceeding further

this way, the same series result, which are known to originate from the

expansion of the fraction ﬁ

=1+ 4x + 10x% + 20x° + 35x* + etc.,

§21 This investigation will extend even further, if, before the differentiation
is done, the series and the sum are multiplied by a certain power of x or even
a function of x. Therefore, because

T =l Fat+xr+xd 420 fete,
multiply by x” on both sides and it will be

M
— x™ + xm+1 + xm+2 + xm+3 4 xm+4 + etc.

1—x
Now differentiate this series and, having divided the result by dx, it will be

mx"™ 1 — (m —1)x™
(1-x)

= mx" 1+ (m+1)x™ + (m+2)x" !+ (m +3) 2" + etc.



Now divide by ™1 one will have

m—(m—1)x m x 2
d—x7 1—x+(1—x)2 m+ (m+1)x + (m+2)x° + etc

Before differentiating again multiply this equation by x", so that

mx" A+l
T—x (1—x)?

= mx" + (m+ 1)+ (m +2)x" 2 + etc.

Now, let us differentiate, and having divided by dx, it will be

mnx" 1 n (m+n+1)x" n 2x"H1
1—x (1—x)? (1—x)3

= mnx""1 4+ (m +1)(n+ 1)x" + (m +2)(n +2)x" ™ + etc.

But, having divided by x"1 it will be

mn  (m+n+1)x 2xx
T—x T a=x2 Ta—xp

= mn+ (m+1)(n+1)x + (m +2)(n +2)x* + etc.

and it will be possible to proceed further this way; indeed one will always find
the same series which result from the expansions of the fractions constituting
the sum.

§22 Since the sum of the geometric progression assumed at first can be
assigned up to any given term, this way also series consisting of a finite
number of terms will be summed. Because

1— xn+1
i T+x4+x2+2°+xr+ 2,
after the differentiation and having divided the result by dx it will be

1 (n+1)x" — nx"+1
(1-x)?% (1—x)?

=14+2x+32+4x3 + - +nx" L.

Therefore, the sum of the powers of natural numbers up to a certain term can
be found. For, multiply this series by x, so that



x — (n+1)x" 4 a2
(1-x)?
which, having differentiated it again and divided by dx, will give

= x 422 4+3x3+ - +nx",

T+x— (n+1)x" + (2nn +2n — 1)x" 1 — nnx*+2
(1—x)°

this equation multiplied by x will give

= 14+4x+9x2+- -+ n>x"L;

x+x2— (n+1)2x" + (2nn 4 2n — 1)x" 2 — nnx" 3
-y

which equality, if differentiated, divided by dx and multiplied by x, will lead
to this series

= x+4x>+ 93+ 022",

x + 8x% +27x3 + - - - + n2x",

whose sum can therefore be assigned. And from this in like manner it is
possible to find the indefinite sum of the fourth powers and higher powers.

§23 Therefore, this method can be applied to all series containing a variable
quantity and whose sum is known, of course. Because, aside from the geo-
metric series, all recurring series enjoy the same property that they can be
summed not only up to infinity but also to any given term, one will be able
to find innumerable other summable series from these by the same method.
Because a lot of work would be necessary, if we wanted to study this in more
detail, let us consider only one single example.

Let this series be propounded

X

-_— = x—i—xz—|—2x3+3x4—|—5x5+8x6+13x7+etc.,
1—x—xx

which equation, if differentiated and divided by dx, will give
TR g2 6+ 120 4 250 + 482 + 910 + et
(1—x—xx)?

But obviously all series resulting this way will also be recurring, whose sums
can therefore even be found more naturally.



§24 Therefore, in general, if the sum of a certain series of this form

ax + bx? + cx® + dx* + etc.
was known, which sum we want to put = S, one will be able to find the
sum of the same series, if each term is multiplied by terms of an arithmetic
progression. For, let
S = ax + bx? + cx® 4+ dx* + ex® + etc,;
multiply by x™; it will be

Sa™ = ax™ 4 b2 4 o™ 4 dx™H +ete;

differentiate this equation and divide by dx to find

as
mSx™ 1 4 o= (m ax™ + (m + 2)bx" ! + (m 4 3)cx"*? + etc,;

divide by x"~! and it will be

xds
dx
Therefore, if one wants to find the sum of the following series

mS + = (m+ 1)ax + (m +2)bx® + (m + 3)cx® + etc.

wax + (& + B)bx* 4 (a4 2B8)cx® + (a4 38)dx* + etc.,

multiply the above series by B and put mp + = a, so that M = %, and the
sum of this series will be

BxdS
dx

=(a—pB)S+

§25 One will also be able to find the sum of this propounded series, if each
term is multiplied by a term of a progression of second order, whose second
differences are just constant, of course. For, because we already found

mS + Jijj = (m+1)ax + (m +2)bx* + (m + 3)cx® + etc.,

multiply this equation by x" that



xn+1 ds
dx
differentiate this equation, where dx is assumed to be constant, and divide by
dx; this gives

msx" + = (m+1)ax""" + (m +2)bx™*? + etc;

(m+n+1)x"S n x"t1dds
dx dx?
= (m+1)(n+1)ax" + (m+2)(n +2)bx"*! + etc.

mnSx" 1 +

Divide by x"~! and multiply by k, so that

(m+n+1)kxdS N kx?ddD
dx dx?

= (m+1)(n+ 1kax + (m +2)(n + 2)kbx* 4 (m + 3)(n + 3)kex® + etc.

mnkS +

Now, compare this series to the initial one; it will be

Diff. I Diff. II

kmn + 1km + 1kn + 1k = «
km + kn + 3k = B

knm + 2km + 2kn 4 4k =« + 1 2k =«
km + kn + 5k = B + v

Inm + 3km + 3kn 4+ 9%k = a + 2B + 7

Therefore, k = %’y andm—+n=2_3and

mn:——m—n_lzzi_%_{_zzw.

Therefore, the sum of the series in question will be

(B—)xdS n yx*ddS

(e =p+7)S+ dx 2dx2



§26 In like manner, one will be able to find the sum of this series

Aa + Bbx + Ccx? + Ddx® + Eex* + etc.,

if the sum S of this series was known, of course, i.e.

S =a+bx+cx®+dx® +dx® +ex* + fx° +etc.

and A, B, C, D etc. constitute a series eventually reduced to constant diffe-
rences. For, since its general form is concluded from the preceding, assume
this sum

BxdS N vx2ddS N Sx3d®S N extd*s
dx 2dx? 6dx3 24dx4
Now to find the letters a, B, 7, J etc., expand each series and it will be

aS +

+ etc.

aS = aa + abx + acx? + adx3 + aex* + etc.

d

’BZXS =+ Bbx + 2Bcx? + 3Bdx> + 4Pex* + etc.

2dds
’y;c e + yex? 4 3ydx® + 6yex* + etc.
ox3d°S
% = + ddx® + 4dext + etc.
extd*S .
W = + eex + etC.

etc.

compare this series, having arranged it according to the powers of x, to the
propounded one, i.e.

7 = Aa + Bbx + Ccx? + Ddx® + Eex* + etc.

and having made the comparison for each term, we find



xa=B—-A
2b—a=C—-2B+ A
—3y—-38—a=D-3C+3B—-A

etc.

a=A
B=B
vy=C
6=D

Having found these values, the sum in question will therefore be

B— A)xdS , (C—2B+A)’ddS | (D—3C+3B— A)r’dS
1dx 1-2dx? 1-2-3dx3

or, if the differences of the series A, B, C, D, E etc. are denoted as usual, it
will be

z=as+

+etc.,

AA - xdS n A?A - x2d2%S n A3A - x3d3S
1dx 1-2dx2 1-2-3dx3
if, as we assumed, it was

Z=AS+

+ etc,,

S =a+bx+cx®+dx®+ext + fx° +etc.

Therefore, if the series A, B, C, D etc. has eventually constant differences, one
will be able to express the sum of the series Z finitely.

§27 Since, having taken e for the number whose hyperbolic logarithm is = 1,

U ST AR S U

- 1 1-2 1.2-3 1-2:3-4 1-2-3-4.5 v
assume this series for the first, and because S = e*, it will be % = e, % =e"
etc. Therefore, the sum of this series composed of that one and this one: A, B,

C, D etc., i.e. the series

A+§+Cx2+ Dx3 N Ex*
1 1-2 1-2-3 1-2-3-4

will be expressed this way

+ etc.

o A+XAA+XXA2A+JC3A3A+ x*AA + ete
1 1-2 1-2.3 1-2-3-4 )



Hence, if this series is propounded

2+57x_'_10x2+ 17x2 + 26x* n 37x°
1 1-2 1-2-3 1-2-3-4 1-2-3-4-5

because of the series

+ etc.,

AI BI C/ D, E etC.,

A = 2, 5, 10, 17, 26 etc.
AA = 3, 5, 7, 9 etc.
AANA = 2, 2, 2 etc.,

the sum of this series

25y g 0 170 208
2 6 24 o€

will be

=e"(2+3x+xx) =e"(1+x)(2+x),

which is immediately clear. For,

N
=
N
N
=
w
N
=
h'S

2
26"22—1—%—1——4- + etc.

N
|
N
=~

[&Y)
=
N
@
=
N
[6Y)
=
'S

3xe* = + 3x + — + + etc.

xxe¥ = + xx + + etc.

[y
r—k‘*w N‘
(o)}

and in total

1 17x3  24x*
e*(1+3x+xx) =2+ 5x + 02xx+ 6x + 251( + etc.




§28 The things discussed up to this point apply not only to infinite series,
but also to sums of series consisting of a finite number of terms; for, the
coefficients a, b, ¢, d etc. can either be continued to infinity or can terminate at
any arbitrary point. But because this does not require any further explanation,
let us consider in more detail what follows from the results found up to this
point. Therefore, having propounded any arbitrary series, whose terms each
consist of two factors, the one group of which factors constitutes a series
leading to constant differences, one will be able to assign the sum of this
series, as long as, having omitted these factors, the sum was summable. Of
course, if this series is propounded

7 = Aa + Bbx + Ccx? + Ddx® + Eex* + etc.

in which the quantities A, B, C, D, E etc. constitute a series eventually reduced
to constant differences, one will be able to exhibit the sum of this series, if the
sum S of the following series is known

S = a+bx+cx* +dx® + ex* + etc.

For, having calculated the iterated differences of the progression A, B, C, D, E
etc., as we showed at the beginning of this book,

A, B, C, D, E, F, etc.
AA AB, AC, AD, AE  etc.

the sum of the propounded series will be
xdS x?dds , x3d3S
2= SAT IR M T Y A T 3w

having put dx to be constant in the higher powers of S, of course.

ASA + etc.,

10



§29 Therefore, if the series A, B, C, D etc. never leads to constant differences,
the sum of the series Z will be expressed by means of a new infinite series
converging more rapidly than the initial one, and hence this series will be
transformed into another one equal to it. To illustrate this, let this series be
propounded

2 3 4 5 6
gy LYY
Y—y+2+3+4+5+6+etc.,
which is known to express log ﬁ such that Y = —log(1 — y). Divide the

series by y and put y = x and Y = yZ, so that

Z= —]1/10g(1 —y) = —%log(l —Xx);
it will be

VR TS S S S L
I A T I R S

which series compared to

1
S=1+x+2+3+x*+ 2%+ x0+etc. = ——

1—x
will give these values for the series A, B, C, D, E etc.

1 1 1 1 1
’ 2’ 3’ 4 5 ©¢
1-27 2.3 3.4’ 4.5 '
1-2 1-2 1-2 "

1-2.3 2.3.4’ 3.4.5 e
B 1-2-3 B 1-2-3 ot
1-2-3-47 2-3-4-5 '

etc.

Therefore, it will be

1 1 1
A=1, AA=—=, AN’A==, AN3A=—_etc
7 2/ 3/ 4 e C

11



Further, because S = ﬁ, it will be

s 1 dds 1 Bs 1 t
dx ~ (1-x2 T-2d2 (1-x3 1-2-3d3 (1-x4 °°
Having substituted these values, this sum will result
Z = LI a + © - < + o —etc
S 1-x 2(1—-x)2 3(1—x)3 4(1—x)* 5(1—x)° '
Therefore, because x = y and Y = —log(1 — y) = yZ, it will be
2 3 4
¥ ¥ y ¥
—log(l—vy) = — — .
e B A S e

which series obviously expresses log (1 + %) = log ffy = —log(1 —y), the
validity of which is even immediate considering the results demonstrated
before.

§30 To illustrate the application for a case in which only odd powers occur
and the signs alternate, let this series be propounded

5 7 9 11

L L L Y e,

5 7 9 1
which equation is equivalent to Y = arctany.

3
Y:y—‘%—k

Divide this series by y and put % = Z and yy = x; it will be

Z—l—f—l-ﬁ—xj+xf4—x—5+etc
B 3 5 7 9 11 ’

If it is compared to the following

S=1—x+xx—x>+x*— 2% +etc,

itwill be S = 14—% and the series of coefficients A, B, C, D etc. will become

12



1 1 1 1
A = 1, 3 5 7 o etc.
2 2 2 2
M= T35 “5.7 “7.9  Ct©
2-4 2-4 2-4
2
_ i tc.
aA 3.5 3.5.7 5.7-9 et
2-4-6 2-4-6
34 _ _ _
A= 3.5.7 3.5.7-9 ete.
2-4-6-8
4
= tc.
A*A 3.5.7.9 etc
etc.
But, since S = h{—x, it will be
as 1 ads 1 a3s 1 otc
ldx  (14+x)2" 1-2dx2  (1+x)3 1-2-3dx3 (14 x)* '
Hence, having substituted these values, the form will become
IS - S 2-4x? N 2-4-6x° + et
C1+4+x 3(1+x)2  3.5(1+x)3  3-5-7(1+x)* ?
having substituted x = yy again and multiplied by y, it will be
v 213 2-4y° 2-4-6y7
Y = t = tc.
ANy = T 3 2 T35ty 3570ty o

§31 One can also transform the above series expressing the arc of a circle in
another way by comparing it to the logarithmic series.

For, let us consider the series

VS PN S S S S
N 35 7 9 11 v

which we want to compare to this one

13



1 xx x> xt 1 1

X
and the values of the letters A, B, C, D etc. will be

0 2 4 6 8
A= 3 o F 7 -
e ¥ 2.4 ;75 2.4 % 2.4 7% -
MA= 35 55 5779 ete.
A3A = g;? etc.

etc.

Further, since S = § — 1 log(1 + x), it will be

a1 ads 1
ldx — 2(1+x)" 1-2dx2  4(1+x)?’
d®s 1 d*s 1

= — , = t
1.2-3d83  6(1+x)73 1.2-3-4dx*  8(1+x)7* °F

Therefore, it will be SA = S% = 1 and from the remaining terms it will be

7 _1_ X B 2xx B 2 4x3 ot
~ 3(1+x) 3-5(1+x)2 3-5-7(1+x)3 '
Now, let us put x = yy and multiply by y; it will be
y3 2y5 2. 4y7

Y = arctany =y — 3 etc.

(I+yy) 3-51+yy)? 3-5-7(1+yy)’

This transformation will therefore not be obstructed by the infinite term

etc.

entering the series S. But if there remains any doubt, just expand each but the
tirst term into power series in y and one will discover that indeed the series

propounded initially results.

14



§32 Up to this point we considered only series in which all powers of the
variable occurred. Now, we want proceed to other series which in each term
contain the same power of the variable; the following series is of this kind

1 1 1

Tatx btxctrx dix
For, if the sum S of this series was known and is expressed by a certain
function of x, by differentiating and by dividing by —dx, it will be

+ etc.

-ds 1 n 1 n 1 n 1

dx  (a+x)?2 (b+x)?2 (c+x)?2 (d+x)
If this series is differentiated again and divided by —2dx, one will recognize
the series of the cubes

5 + etc.

dds _ 1, 1 1 1
2dx2 (a+x)? " (b+x)3  (c+x)?  (d+x)

and this series, differentiated again and divided by —3dx, will give

3 + etc.

-d*s 1 n 1 n 1 n 1

dx3  (a+x)* (b+x)* (c+x)?*  (d+x)
And in the same way, the sum of all following powers will be found, if the
sum of the first series was known.

n + etc.

§33 But we found series of fractions of this kind involving a variable quantity
in the Introductio, where we showed, if the half of the circumference of the
circle, whose radius is = 1, is set = 71, that

L—l-l— LEN S — + L + —etc
nsin%rf—m n—-m mn+m 2n—-m 2n+m 3n—m '
ncos%n B l_ 1 n 1 B 1 n 1 _ 1 et
nsin%ﬂ_m n—-m mn+m 2n—-m 2n+m 3n—m '

Therefore, because it is possible to assume any arbitrary numbers for m and
n, let us set n = 1 and m = x so that we obtain a series similar to that one we
propounded in the preceding paragraph; having done this, it will be

15



no_1,. 111 (N B
sinmx x 1—x 14x 2—x 24+x 3—x '
rtcosn_l_ 1 n 1 B 1 n 1 B 1 et
sintx x 1—-x 14x 2—x 24x 3—x ’

Therefore, one will be able to exhibit the sums of any powers of fractions
resulting from these fractions by means of differentiations.

§34 Let us consider the first series and for the sake of brevity put — = S;

take its higher differentials alwas assuming dx to be constant, and it will be

S = l—i— ! - - + ! + ! — etc.

X 1—x 1+4+x 2—x 24+x 3—x

—dSs 1 1 1 1 1 1
P R T (T AR T AR CE T N CE

dds 1 1 1 1 1 1
Y W R WP R e R P R S

—d3s 1 1 1 1 1 1
A T T A CE T L CE T

d*s 1 1 1 1 1 1
Ulx 6 (A=xpF (A+x8 (2—xp Btap B_xp ©©

—d°S 1 1 1 1 1 1
208x ¥ (-xF (+x° 2=xF B+xs (B-xp

etc.

where it is to be noted that in the series of even powers the signs follow the
same law and in like manner in the series of odd powers the structure of the
signs is always the same. Therefore, the sums of all these series are found

from the differentials of the expression S = .

§35 To express this differentials more conveniently, let us put

sint=p and cosw=g;

16



it will be

dp = mdxcosmx = mqgdx and dq = —mpdx.

Therefore, because S = ?, it will be
—dS  mq
dx pp
dds _ m(pp+2q9) _ m(q9+1) _
Frei p3 = p3 since pp+qq=1
_ A3 (a3
S o (B, ) Nt
dxs p*
d*s 5 24q 28q _ (q* +184* +5)
dxt p° )T p°
-d°s 120q5 180q 61q 7% (q° + 58¢° + 619)
—— =T +— ) =
de P6 4 pp P6
d°s ; 720q 1320q 6627> 61 77 (q° 4 1799* + 4794% + 61)
— =TT + +— ) =
dx® p? p p’
—d’s 5040 10920 72664° 1385
7 = ° 6] T+ 411 + zq
dx p p

or

8
= T (47 +543¢° + 31114° + 1385
3 (7 q q q

4 o (40320q8 . 1008004° N 836644 N 2456842 . 1385>
dx® p’ p’ p° p3 p
or

9
= 7;9(q8 + 16364° + 182704* + 190284% + 1385)

etc.

These expressions are easily continued arbitrarily far; for, if it was

ars 1 “qn ’Bqan ,anf4 5qn76
e = o <pn+1 T pn1 + pn3 - pn=5 Tete ),

17



then its differential, having changed the signs, will be
qn+1 qnfl qnf?)
g | 0 Ve et (- 0BT 4 (r =208+ (n -3

:Fi
dynt1 n—5
+ ((n—4)y+ (n—5)9) Z”4

n—2

S

+ etc.

§36 Therefore, from these series one will obtain the following sums of the
series exhibited in § 34

S=rm- 1
p
—-dS 7w q
dx 1 p?
dds <2q2 N 1>
24dx?2 2 \p® p
—d®s 7t < 64> +5q>
6dx3 6 \ p*t p?
d*s 7 (244" 284> 5
= +
24dx* 24 < i p)
—d°s  n® < q° 180q N 61q>
120dx> 120 p?
s L <720q 1320q N 6624* Lol >
720dx6 720 & p
~-d’s ot (5040q . 10920q5 | 766" 1385q)
720dx6 5040 p8 Pt p* p?
Bs (40320q8 100800g° | 836644" | 245684 , 1385)
40320dx® 40320 p° p’ p> p3 p

etc.

§37 Let us treat the other series found above [§ 33] in the same way, i.e. the
series
mecosmtx 1 1 1 1 1

1
==- - - tc.
sin 7tx X 1—x+1—|—x 2—x+2—|—x 3_x+ec

18



and, for the sake of brevity having pu

will result

T

—dT
dx
ddT
2dx?
—d3T

6d3x

da*T

24dx4

—d°T

120d%x

where in the series of even powers all terms are positive, but in the series of

t o = T, the following summations
1 1 1 1 1
Yy  1—x 1+ x 22— x ﬁ et
1 1 1 1 1
A (e (e AR ey R
1 1 1 1 1
BT A-xp  (@rap @oap @rar OF
1 1 1 1 1
F+(l—x>4+(1+X)4+(2—X)4+<2+x)4+etc
1 1 1 1 1
A= @+ @-wp @
1 1 1 1 1
A A R A R LRy L
etc.,

odd powers the signs + and — alternate.

§38 To find the values of these differentials, as before, let us put

sintx =p and dq = —mpdx

that pp + qq = 1; it will be

dp = mqdx and dgq = —mpdx.

Having added these values, it will be
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T=r- Z

_ 2

a1 = <qq +1) = T

dx pp pp

ddT 5 <2q3 2q> 273g

dxz P3 p p3
—d°T 4<W4 844 ) 4<&M 2)
dx3 pt - pp pt  pp

d'T 5 (24¢°  16q

o= <p5 i p3>
—d°T  , (120g* 12099 =16
M5_n<rﬁ p +W>

d°T 72005  960g° 272

o ud ( 7q 5{1 + 317)

X p p p

—d’T 4 (504045 84004* 36964> 272
i " 8 3 i T2

x p p q p
fz_ﬁ %mwzﬁ%wf+%%w37%w

dx8 p° p7 p5 P

etc.

These formulas can easily be continued arbitrarily far. For, if

::nn+1 aqnfl ﬁqn73 yqnfS
pn+l pn—l pn—3

the expression for the following differential will be

arT
dxn

5qn77
+etc. |,
pro >

_|_

+

dn+1T

. (n = 3)(B+1)g""*
dxn+1

pn—Z

(1= 1)@+ P2

p

pn+2

+ etc.)

§39 Therefore, having put sin 7rx = p and cos 7tx = g, the series of powers
given in § 37 will have the following sums
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—d’T 4 (99 1
6dd <7r4 " ?»pp)
—d*'T (¢ 2
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—d°T ¢ (q*  3qq 2
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720dx6 p’  3p>  45p3
—d’T g (g% 5t 1147 17
5040dx” <ps T 356 T 15,2 315pp>
BT (7 e e e
40320dx8 p?  3p7  5p>  315p3
etc.

§40 Aside from these series, we found several others in the Introductio from
which others can be derived by means of differentiation in the same way.

For, we showed that
1 /X 1 1 1 1 1

- = tc.
2x  2xtan7y/x 1—x+4—x+9—x—1_16—x+25—x+eC

Let us put that the sum of this series is = S, so that

1w cosmyx,
S 2x 2y/x sinmy/x’

it will be

ds 1 T cosT\/X T

dx - 2x T 4x\/x sinmy/x * 4x(sin 7t4/x)?’
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which expression therefore yields the sum of this series

1 1 1 1 1
tc.
A2t a2 T o2 T ae—n2 " 5=z '€
Further, we also showed that
ikt S S SS WS S S
2x i1 2x l1+4+x 4+x 9+x 16+«x '
Therefore, if this sum is put = S, it will be
45 _ ! + ! + ! + ! + etc
dx  (1+x)2  (4+x)2 (9+x)? (16+x)? ’
But
ds -t AWVr41l an g2V 1

dx  da/x @nwEio1 x (@wE_1)2 | 2ax

Therefore, the sum of this series will be

—ds T WYyl am e2TVx 1

dx :4x\/i.32”\/§—1+ x .(62”\/5—1)2_@'

And in like manner the sums of the following powers will be found by means

of further differentiation.

§41 If the value of a certain product composed of factors involving the
variable letter x was known, one will be able to find innumerable summable
series from it by means of the same method. For, let the value of this product

(1+ax)(1+4 Bx)(1+vx)(1+dx)(1+ ex)etc.

be = S, a function of x, of course; taking logarithms it will be

log S =log(1 + ax) +log(1 + Bx) +log(1 + yx) + log(1 + dx) + etc.

Now take the differentials; after division by dx it will be

s _ e L P, 7 L 0
Sdx  14ax 1+Bx 1+9x 1+46x v
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from further differentiation of which series the sums of any powers of these
fractions will be found, precisely as we explained it in more detail in the
preceding examples.

§42 But, in the Introductio we exhibited several expressions we want to apply
this method to. If 7r is the arc of 180° of the circle whose radius is = 1, we
showed that

mrt mm 4nn —mm lénn —mm 26nn — mm

iy TP tc.
s 2n 2n dnn 16nn 36nn e
mm_ nn —mm 9nn —mm 25nun —mm 49nn — mm -
S T mn Inn 25nn 49nn '
Let us put n = 1 and m = 2x, so that
R 1—xx 4—xx 9—xx 16— xx ot
S - 1 4 9 16 ‘
or
Tt — Ty l-x 1+x 2—x 24x 3—x 3+x 4—x ot
ST = 1 1 2 2 3 3 4 ‘
and
T — 1—4xx 9—4xx 25 —4xx 49 —4xx -
CoSTE =" 9 25 49 ‘
or
1—2x 1+2x 3—2x 34+2x 5—2x 54 2x
COS 7TX = . . . . . . etc.

1 1 3 3 5 5
Therefore, from these expressions, if one takes logarithms, it will be

1-— 1 2— 2 3 -
logsin mx = log x + log 1x—|—log —;x—i—log 2x—i—log —;x—l—long—i—etC.
— 142 -2 2 -2
logcosmc:log1 12x+log +1 x+log3 3 x+log3z x-l—logSTx-i-etC.
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§43 Now let us take the differentials of these series of logarithms and, having
divided by dx everywhere, the first series will give

meosmtx 11 n 1 1 n 1 1 + et
sintx  x l1—-x 1+x 2—-x 2+x 3—x '
which is the series we discussed in § 37. The other series on the other hand

will give

—7rsin7'cx__ 2 n 2 B 2 n 2 B Let
cosmx  1-2x 1+2x 3—2x '34+2x 5-2r ¢
Let us put 2x = z, so that x = 3, and divide by —2; it will be
7 sin 37z 1 1 N 1 1 N 1 .
= — — — etc.
2cos%7[z 1-z 14z 3—z 34z 5-—z
But, since
sinlnz—\/il_cosmz and coslnz—\/71+cosnz
207 2 277 2 !
it will be

ny1—cosmz 2 B 2 2 2
v/1+ cos 7tz " 1—-z 14z 3—-z 5—2

or, writing x instead of z,

n\/l—cosnx_ 2 B 2 + 2 B 2 n 2 ete
v/1+ cos tx " 1—-x 1+x 3—x 3+x 5-—x )

Add this series to the one found first

ncosnx_l_ 1 + 1 _ 1 n 1 _ + etc
sinmx x 1—x 14x 2—x 24+x 3—x '

and one will find the sum of this series

1 1 1 1 1 1 1

-+ —~ —~ - - —
x 1-x 14+4x 2-x 2+x 3—-x 3+x

_ 1/ 1—cos mx 7T COS TTX : . v/ 1—cos x
to be = Vircosn T sinmx - But this fraction VFcosmx
denominator are multiplied by v/1 — cos 7tx, goes over into 1’;372” Therefore,

the sum of the series will be = ", which is the series we considered in §

34; therefore, we will not prosecute this any further.

— etc.

, if the numerator and
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