
On the investigation of summable

series *

Leonhard Euler

§19 If the sum of a series, whose terms contain the variable quantity x, was
known, and which series will therefore be a function of x, then, whatever
value is attributed to x, one will always be able to assign the sum of the series.
Therefore, if one writes x + dx instead of x, the sum of the resulting series will
be equal to the sum of the first series and the differential: Hence it follows
that the differential of the sum will be = the differential of the series. Because
this way so the sum as each term will be multiplied by dx, if one divides by
dx everywhere, one will have a new series, whose sum will be known. In like
manner, if this series is differentiated again and is divided by dx, a new series
will result together with its sum and this way new likewise summable series
will be found from one summable series involving the variable quantity x, if
that series is differentiated several times.

§20 In order to understand all this more clearly, let the variable geometric
progression be propounded, whose sum is known; for,

1
1− x

= 1 + x + x2 + x3 + x4 + x5 + x6 + etc.

If this equation is now differentiated with respect to x, it will be
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book „Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum,
1755“, reprinted in Opera Omnia: Series 1, Volume 10, pp. 235 - 255, Eneström-Number E212,
translated by: Alexander Aycock for the „Euler-Kreis Mainz“
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dx
(1− x)2 = dx + 2xdx + 3x2dx + 4x3dx + 5x4dx + etc.,

and having divided by dx, one will have

1
(1− x)2 = 1 + 2x + 3x2 + 4x3 + 5x4 + etc.

If one differentiates the last equation once more and divides by dx, this
equation will result

2
(1− x)3 = 2 + 2 · 3x + 3 · 4x2 + 4 · 5x3 + 5 · 6x4 + etc.

or

1
(1− x)3 = 1 + 3x + 6x2 + 10x3 + 15x4 + 21x5 + etc.

where the coefficients are the triangular numbers. If one differentiates once
again and divides by 3dx, one will obtain

1
(1− x)4 = 1 + 4x + 10x2 + 20x3 + 35x4 + etc.,

whose coefficients are the first pyramidal numbers. And, proceeding further
this way, the same series result, which are known to originate from the
expansion of the fraction 1

(1−x)n .

§21 This investigation will extend even further, if, before the differentiation
is done, the series and the sum are multiplied by a certain power of x or even
a function of x. Therefore, because

1
1− x

= 1 + x + x2 + x3 + x4 + x5 + etc.,

multiply by xm on both sides and it will be

xm

1− x
= xm + xm+1 + xm+2 + xm+3 + xm+4 + etc.

Now differentiate this series and, having divided the result by dx, it will be

mxm−1 − (m− 1)xm

(1− x)2 = mxm−1 +(m+ 1)xm +(m+ 2)xm+1 +(m+ 3)xm+2 + etc.
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Now divide by xm−1; one will have

m− (m− 1)x
(1− x)2 =

m
1− x

+
x

(1− x)2 = m + (m + 1)x + (m + 2)x2 + etc.

Before differentiating again multiply this equation by xn, so that

mxn

1− x
+

xn+1

(1− x)2 = mxn + (m + 1)xn+1 + (m + 2)xn+2 + etc.

Now, let us differentiate, and having divided by dx, it will be

mnxn−1

1− x
+

(m + n + 1)xn

(1− x)2 +
2xn+1

(1− x)3

= mnxn−1 + (m + 1)(n + 1)xn + (m + 2)(n + 2)xn+1 + etc.

But, having divided by xn−1, it will be

mn
1− x

+
(m + n + 1)x

(1− x)2 +
2xx

(1− x)3

= mn + (m + 1)(n + 1)x + (m + 2)(n + 2)x2 + etc.

and it will be possible to proceed further this way; indeed one will always find
the same series which result from the expansions of the fractions constituting
the sum.

§22 Since the sum of the geometric progression assumed at first can be
assigned up to any given term, this way also series consisting of a finite
number of terms will be summed. Because

1− xn+1

1− x
= 1 + x + x2 + x3 + x4 + · · ·+ xn,

after the differentiation and having divided the result by dx it will be

1
(1− x)2 −

(n + 1)xn − nxn+1

(1− x)2 = 1 + 2x + 3x2 + 4x3 + · · ·+ nxn−1.

Therefore, the sum of the powers of natural numbers up to a certain term can
be found. For, multiply this series by x, so that
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x− (n + 1)xn+1 + nxn+2

(1− x)2 = x + 2x2 + 3x3 + · · ·+ nxn,

which, having differentiated it again and divided by dx, will give

1 + x− (n + 1)xn + (2nn + 2n− 1)xn+1 − nnxn+2

(1− x)3 = 1+ 4x+ 9x2 + · · ·+n2xn−1;

this equation multiplied by x will give

x + x2 − (n + 1)2xn+1 + (2nn + 2n− 1)xn+2 − nnxn+3

(1− x)3 = x+ 4x2 + 9x3 + · · ·+n2xn,

which equality, if differentiated, divided by dx and multiplied by x, will lead
to this series

x + 8x2 + 27x3 + · · ·+ n2xn,

whose sum can therefore be assigned. And from this in like manner it is
possible to find the indefinite sum of the fourth powers and higher powers.

§23 Therefore, this method can be applied to all series containing a variable
quantity and whose sum is known, of course. Because, aside from the geo-
metric series, all recurring series enjoy the same property that they can be
summed not only up to infinity but also to any given term, one will be able
to find innumerable other summable series from these by the same method.
Because a lot of work would be necessary, if we wanted to study this in more
detail, let us consider only one single example.

Let this series be propounded

x
1− x− xx

= x + x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7 + etc.,

which equation, if differentiated and divided by dx, will give

1 + xx
(1− x− xx)2 = 1 + 2x + 6x2 + 12x3 + 25x4 + 48x5 + 91x6 + etc.

But obviously all series resulting this way will also be recurring, whose sums
can therefore even be found more naturally.
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§24 Therefore, in general, if the sum of a certain series of this form

ax + bx2 + cx3 + dx4 + etc.

was known, which sum we want to put = S, one will be able to find the
sum of the same series, if each term is multiplied by terms of an arithmetic
progression. For, let

S = ax + bx2 + cx3 + dx4 + ex5 + etc.;

multiply by xm; it will be

Sxm = axm+1 + bxm+2 + cxm+3 + dxm+4 + etc.;

differentiate this equation and divide by dx to find

mSxm−1 + xm dS
dx

= (m + 1)axm + (m + 2)bxm+1 + (m + 3)cxm+2 + etc.;

divide by xm−1 and it will be

mS +
xdS
dx

= (m + 1)ax + (m + 2)bx2 + (m + 3)cx3 + etc.

Therefore, if one wants to find the sum of the following series

αax + (α + β)bx2 + (α + 2β)cx3 + (α + 3β)dx4 + etc.,

multiply the above series by β and put mβ + β = α, so that M = α−β
β , and the

sum of this series will be

= (α− β)S +
βxdS

dx
.

§25 One will also be able to find the sum of this propounded series, if each
term is multiplied by a term of a progression of second order, whose second
differences are just constant, of course. For, because we already found

mS +
xdS
dx

= (m + 1)ax + (m + 2)bx2 + (m + 3)cx3 + etc.,

multiply this equation by xn that
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mSxn +
xn+1dS

dx
= (m + 1)axn+1 + (m + 2)bxn+2 + etc.;

differentiate this equation, where dx is assumed to be constant, and divide by
dx; this gives

mnSxn−1 +
(m + n + 1)xnS

dx
+

xn+1ddS
dx2

= (m + 1)(n + 1)axn + (m + 2)(n + 2)bxn+1 + etc.

Divide by xn−1 and multiply by k, so that

mnkS +
(m + n + 1)kxdS

dx
+

kx2ddD
dx2

= (m + 1)(n + 1)kax + (m + 2)(n + 2)kbx2 + (m + 3)(n + 3)kcx3 + etc.

Now, compare this series to the initial one; it will be

Diff. I Diff. II

kmn + 1km + 1kn + 1k = α

knm + 2km + 2kn + 4k = α + 1β

lnm + 3km + 3kn + 9k = α + 2β + γ

km + kn + 3k = β

km + kn + 5k = β + γ

2k = γ

Therefore, k = 1
2 γ and m + n = 2β

γ − 3 and

mn =
α

k
−m− n− 1 =

2α

γ
− 2β

γ
+ 2 =

2(α− β + γ)

γ
.

Therefore, the sum of the series in question will be

(α− β + γ)S +
(β− γ)xdS

dx
+

γx2ddS
2dx2 .

6



§26 In like manner, one will be able to find the sum of this series

Aa + Bbx + Ccx2 + Ddx3 + Eex4 + etc.,

if the sum S of this series was known, of course, i.e.

S = a + bx + cx2 + dx3 + dx3 + ex4 + f x5 + etc.

and A, B, C, D etc. constitute a series eventually reduced to constant diffe-
rences. For, since its general form is concluded from the preceding, assume
this sum

αS +
βxdS

dx
+

γx2ddS
2dx2 +

δx3d3S
6dx3 +

εx4d4S
24dx4 + etc.

Now to find the letters α, β, γ, δ etc., expand each series and it will be

αS = αa + αbx + αcx2 + αdx3 + αex4 + etc.

βxdS
dx

= + βbx + 2βcx2 + 3βdx3 + 4βex4 + etc.

γx2ddS
2dx2 = + γcx2 + 3γdx3 + 6γex4 + etc.

δx3d3S
6dx3 = + δdx3 + 4δex4 + etc.

εx4d4S
24dx4 = + εex4 + etc.

etc.

compare this series, having arranged it according to the powers of x, to the
propounded one, i.e.

Z = Aa + Bbx + Ccx2 + Ddx3 + Eex4 + etc.

and having made the comparison for each term, we find
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α = A

β = B− α = B− A

γ = C− 2β− α = C− 2B + A

δ = D− 3γ− 3β− α = D− 3C + 3B− A

etc.

Having found these values, the sum in question will therefore be

Z = AS+
(B− A)xdS

1dx
+

(C− 2B + A)x2ddS
1 · 2dx2 +

(D− 3C + 3B− A)x3d3S
1 · 2 · 3dx3 + etc.,

or, if the differences of the series A, B, C, D, E etc. are denoted as usual, it
will be

Z = AS +
∆A · xdS

1dx
+

∆2A · x2d2S
1 · 2dx2 +

∆3A · x3d3S
1 · 2 · 3dx3 + etc.,

if, as we assumed, it was

S = a + bx + cx2 + dx3 + ex4 + f x5 + etc.

Therefore, if the series A, B, C, D etc. has eventually constant differences, one
will be able to express the sum of the series Z finitely.

§27 Since, having taken e for the number whose hyperbolic logarithm is = 1,

ex = 1 +
x
1
+

x2

1 · 2 +
x3

1 · 2 · 3 +
x4

1 · 2 · 3 · 4 +
x5

1 · 2 · 3 · 4 · 5 + etc.,

assume this series for the first, and because S = ex, it will be dS
dx = ex, ddS

dx2 = ex

etc. Therefore, the sum of this series composed of that one and this one: A, B,
C, D etc., i.e. the series

A +
Bx
1

+
Cx2

1 · 2 +
Dx3

1 · 2 · 3 +
Ex4

1 · 2 · 3 · 4 + etc.

will be expressed this way

ex
(

A +
x∆A

1
+

xx∆2A
1 · 2 +

x3∆3A
1 · 2 · 3 +

x4∆4A
1 · 2 · 3 · 4 + etc.

)
.

8



Hence, if this series is propounded

2 +
5x
1

+
10x2

1 · 2 +
17x2

1 · 2 · 3 +
26x4

1 · 2 · 3 · 4 +
37x5

1 · 2 · 3 · 4 · 5 + etc.,

because of the series

A, B, C, D, E etc.,

A = 2, 5, 10, 17, 26 etc.

∆A = 3, 5, 7, 9 etc.

∆∆A = 2, 2, 2 etc.,

the sum of this series

2 + 5x +
10x2

2
+

17x3

6
+

26x4

24
+ etc.

will be

= ex(2 + 3x + xx) = ex(1 + x)(2 + x),

which is immediately clear. For,

2ex = 2 +
2x
1

+
2x2

2
+

2x3

6
+

2x4

24
+ etc.

3xex = + 3x +
3x2

1
+

3x2

2
+

3x4

6
+ etc.

xxex = + xx +
x3

1
+

x4

2
+ etc.

and in total

ex(1 + 3x + xx) = 2 + 5x +
10xx

2
+

17x3

6
+

24x4

24
+ etc.
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§28 The things discussed up to this point apply not only to infinite series,
but also to sums of series consisting of a finite number of terms; for, the
coefficients a, b, c, d etc. can either be continued to infinity or can terminate at
any arbitrary point. But because this does not require any further explanation,
let us consider in more detail what follows from the results found up to this
point. Therefore, having propounded any arbitrary series, whose terms each
consist of two factors, the one group of which factors constitutes a series
leading to constant differences, one will be able to assign the sum of this
series, as long as, having omitted these factors, the sum was summable. Of
course, if this series is propounded

Z = Aa + Bbx + Ccx2 + Ddx3 + Eex4 + etc.

in which the quantities A, B, C, D, E etc. constitute a series eventually reduced
to constant differences, one will be able to exhibit the sum of this series, if the
sum S of the following series is known

S = a + bx + cx2 + dx3 + ex4 + etc.

For, having calculated the iterated differences of the progression A, B, C, D, E
etc., as we showed at the beginning of this book,

A, B, C, D, E, F, etc.

∆A ∆B, ∆C, ∆D, ∆E etc.

∆2A ∆2B, ∆2C, ∆2D etc.

∆3A ∆3B, ∆3C, etc.

∆4A ∆4B, etc.

∆5A etc.

etc.

the sum of the propounded series will be

Z = SA +
xdS
1dx

∆A +
x2ddS

1 · 2dx2 ∆2A +
x3d3S

1 · 2 · 3dx3 ∆3A + etc.,

having put dx to be constant in the higher powers of S, of course.
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§29 Therefore, if the series A, B, C, D etc. never leads to constant differences,
the sum of the series Z will be expressed by means of a new infinite series
converging more rapidly than the initial one, and hence this series will be
transformed into another one equal to it. To illustrate this, let this series be
propounded

Y = y +
y2

2
+

y3

3
+

y4

4
+

y5

5
+

y6

6
+ etc.,

which is known to express log 1
1−y such that Y = − log(1− y). Divide the

series by y and put y = x and Y = yZ, so that

Z = −1
y

log(1− y) = −1
x

log(1− x);

it will be

Z = 1 +
x
2
+

x2

3
+

x3

4
+

x4

5
+

x5

6
+ etc.,

which series compared to

S = 1 + x + x2 + x3 + x4 + x5 + x6 + etc. =
1

1− x
will give these values for the series A, B, C, D, E etc.

1,
1
2

,
1
3

,
1
4

,
1
5

etc.

− 1
1 · 2, − 1

2 · 3, − 1
3 · 4, − 1

4 · 5 etc.

1 · 2
1 · 2 · 3,

1 · 2
2 · 3 · 4,

1 · 2
3 · 4 · 5 etc.

− 1 · 2 · 3
1 · 2 · 3 · 4, − 1 · 2 · 3

2 · 3 · 4 · 5 etc.

etc.

Therefore, it will be

A = 1, ∆A = −1
2

, ∆2A =
1
3

, ∆3A = −1
4

etc.
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Further, because S = 1
1−x , it will be

dS
dx

=
1

(1− x)2 ,
ddS

1 · 2dx2 =
1

(1− x)3 ,
d3S

1 · 2 · 3dx3 =
1

(1− x)4 etc.

Having substituted these values, this sum will result

Z =
1

1− x
− x

2(1− x)2 +
x2

3(1− x)3 −
x3

4(1− x)4 +
x4

5(1− x)5 − etc.

Therefore, because x = y and Y = − log(1− y) = yZ, it will be

− log(1− y) =
y

1− y
− y2

2(1− y)2 +
y3

3(1− y)3 −
y4

4(1− y)4 + etc.,

which series obviously expresses log
(

1 + y
1−y

)
= log 1

1−y = − log(1− y), the
validity of which is even immediate considering the results demonstrated
before.

§30 To illustrate the application for a case in which only odd powers occur
and the signs alternate, let this series be propounded

Y = y− y3

3
+

y5

5
− y7

7
+

y9

9
− y11

11
+ etc.,

which equation is equivalent to Y = arctan y.

Divide this series by y and put Y
y = Z and yy = x; it will be

Z = 1− x
3
+

xx
5
− x3

7
+

x4

9
− x5

11
+ etc.

If it is compared to the following

S = 1− x + xx− x3 + x4 − x5 + etc.,

it will be S = 1
1+x and the series of coefficients A, B, C, D etc. will become
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A = 1,
1
3

,
1
5

,
1
7

,
1
9

, etc.

∆A = − 2
3

, − 2
3 · 5, − 2

5 · 7, − 2
7 · 9 etc.

∆2 A =
2 · 4
3 · 5,

2 · 4
3 · 5 · 7,

2 · 4
5 · 7 · 9 etc.

∆3 A = − 2 · 4 · 6
3 · 5 · 7, − 2 · 4 · 6

3 · 5 · 7 · 9 etc.

∆4 A =
2 · 4 · 6 · 8
3 · 5 · 7 · 9 etc.

etc.

But, since S = 1
1+x , it will be

dS
1dx

= − 1
(1 + x)2 ,

ddS
1 · 2dx2 =

1
(1 + x)3 ,

d3S
1 · 2 · 3dx3 = − 1

(1 + x)4 etc.

Hence, having substituted these values, the form will become

Z =
1

1 + x
+

2x
3(1 + x)2 +

2 · 4x2

3 · 5(1 + x)3 +
2 · 4 · 6x3

3 · 5 · 7(1 + x)4 + etc.;

having substituted x = yy again and multiplied by y, it will be

Y = arctan y =
y

1 + yy
+

2y3

3(1 + yy)2 +
2 · 4y5

3 · 5(1 + yy)3 +
2 · 4 · 6y7

3 · 5 · 7(1 + yy)4 + etc.

§31 One can also transform the above series expressing the arc of a circle in
another way by comparing it to the logarithmic series.

For, let us consider the series

Z = 1− x
3
+

xx
5
− x3

7
+

x4

9
− x5

11
+ etc.,

which we want to compare to this one
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S =
1
0
− x

2
+

xx
4
− x3

6
+

x4

8
− etc. =

1
0
− 1

2
log(1 + x),

and the values of the letters A, B, C, D etc. will be

A =
0
1

,
2
3

,
4
5

,
6
7

,
8
9

etc.

∆A =
2
3

,
+2
3 · 5,

+2
5 · 7,

+2
7 · 9 etc.

∆2 A =
−2 · 4
3 · 5 ,

−2 · 4
3 · 5 · 7,

−2 · 4
5 · 7 · 9 etc.

∆3 A =
2 · 4 · 6
3 · 5 · 7 etc.

etc.

Further, since S = 1
0 −

1
2 log(1 + x), it will be

dS
1dx

= − 1
2(1 + x)

,
ddS

1 · 2dx2 =
1

4(1 + x)2 ,

d3S
1 · 2 · 3dx3 = − 1

6(1 + x)3 ,
d4S

1 · 2 · 3 · 4dx4 =
1

8(1 + x)4 etc.

Therefore, it will be SA = S 0
1 = 1 and from the remaining terms it will be

Z = 1− x
3(1 + x)

− 2xx
3 · 5(1 + x)2 −

2 · 4x3

3 · 5 · 7(1 + x)3 − etc.

Now, let us put x = yy and multiply by y; it will be

Y = arctan y = y− y3

3(1 + yy)
− 2y5

3 · 5(1 + yy)2 −
2 · 4y7

3 · 5 · 7(1 + yy)3 − etc.

This transformation will therefore not be obstructed by the infinite term 1
0

entering the series S. But if there remains any doubt, just expand each but the
first term into power series in y and one will discover that indeed the series
propounded initially results.
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§32 Up to this point we considered only series in which all powers of the
variable occurred. Now, we want proceed to other series which in each term
contain the same power of the variable; the following series is of this kind

S =
1

a + x
+

1
b + x

+
1

c + x
+

1
d + x

+ etc.

For, if the sum S of this series was known and is expressed by a certain
function of x, by differentiating and by dividing by −dx, it will be

−dS
dx

=
1

(a + x)2 +
1

(b + x)2 +
1

(c + x)2 +
1

(d + x)2 + etc.

If this series is differentiated again and divided by −2dx, one will recognize
the series of the cubes

ddS
2dx2 =

1
(a + x)3 +

1
(b + x)3 +

1
(c + x)3 +

1
(d + x)3 + etc.

and this series, differentiated again and divided by −3dx, will give

−d3S
dx3 =

1
(a + x)4 +

1
(b + x)4 +

1
(c + x)4 +

1
(d + x)4 + etc.

And in the same way, the sum of all following powers will be found, if the
sum of the first series was known.

§33 But we found series of fractions of this kind involving a variable quantity
in the Introductio, where we showed, if the half of the circumference of the
circle, whose radius is = 1, is set = π, that

π

n sin m
n π

=
1
m

+
1

n−m
− 1

n + m
− 1

2n−m
+

1
2n + m

+
1

3n−m
− etc.

π cos m
n π

n sin m
n π

=
1
m
− 1

n−m
+

1
n + m

− 1
2n−m

+
1

2n + m
− 1

3n−m
+ etc.

Therefore, because it is possible to assume any arbitrary numbers for m and
n, let us set n = 1 and m = x so that we obtain a series similar to that one we
propounded in the preceding paragraph; having done this, it will be
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π

sin πx
=

1
x
+

1
1− x

− 1
1 + x

− 1
2− x

+
1

2 + x
+

1
3− x

− etc.

π cos π

sin πx
=

1
x
− 1

1− x
+

1
1 + x

− 1
2− x

+
1

2 + x
− 1

3− x
+ etc.

Therefore, one will be able to exhibit the sums of any powers of fractions
resulting from these fractions by means of differentiations.

§34 Let us consider the first series and for the sake of brevity put π
sin πx = S;

take its higher differentials alwas assuming dx to be constant, and it will be

S =
1
x

+
1

1− x
− 1

1 + x
− 1

2− x
+

1
2 + x

+
1

3− x
− etc.

−dS
dx

=
1

xx
− 1

(1− x)2 −
1

(1 + x)2 +
1

(2− x)2 +
1

(3 + x)2 −
1

(3− x)2 − etc.

ddS
2d2x

=
1
x3 +

1
(1− x)3 −

1
(1 + x)3 −

1
(2− x)3 +

1
(3 + x)3 +

1
(3− x)3 − etc.

−d3S
6d3x

=
1
x4 −

1
(1− x)4 −

1
(1 + x)4 +

1
(2− x)4 +

1
(3 + x)4 −

1
(3− x)4 − etc.

d4S
24d4x

=
1
x5 +

1
(1− x)5 −

1
(1 + x)5 −

1
(2− x)5 +

1
(3 + x)5 +

1
(3− x)5 − etc.

−d5S
120d3x

=
1
x6 −

1
(1− x)6 −

1
(1 + x)6 +

1
(2− x)6 +

1
(3 + x)6 −

1
(3− x)6 − etc.

etc.

where it is to be noted that in the series of even powers the signs follow the
same law and in like manner in the series of odd powers the structure of the
signs is always the same. Therefore, the sums of all these series are found
from the differentials of the expression S = π

sin πx .

§35 To express this differentials more conveniently, let us put

sin π = p and cos π = q;

16



it will be

dp = πdx cos πx = πqdx and dq = −πpdx.

Therefore, because S = π
p , it will be

−dS
dx

=
π2q
pp

ddS
dx2 =

π3(pp + 2qq)
p3 =

π3(qq + 1)
p3 since pp + qq = 1

−d3S
dx3 = π4

(
5q
pp

+
6q3

p4

)
=

π4(q3 + 5q)
p4

d4S
dx4 = π5

(
24q4

p5 +
28q2

p3 +
5
p

)
=

π5(q4 + 18q2 + 5)
p5

−d5S
dx5 = π6

(
120q5

p6 +
180q3

p4 +
61q
pp

)
=

π6(q5 + 58q3 + 61q)
p6

d6S
dx6 = π7

(
720q6

p7 +
1320q4

p5 +
662q2

p3 +
61
p

)
=

π7(q6 + 179q4 + 479q2 + 61)
p7

−d7S
dx7 = π8

(
5040q7

p8 +
10920q5

p6 +
7266q3

p4 +
1385q

p2

)
or

=
π8

p8 (q
7 + 543q5 + 3111q3 + 1385q)

d8S
dx8 = π9

(
40320q8

p9 +
100800q6

p7 +
83664q4

p5 +
24568q2

p3 +
1385

p

)
or

=
π9

p9 (q
8 + 1636q6 + 18270q4 + 19028q2 + 1385)

etc.

These expressions are easily continued arbitrarily far; for, if it was

±dnS
dxn = πn+1

(
αqn

pn+1 +
βqn−2

pn−1 +
γqn−4

pn−3 +
δqn−6

pn−5 + etc.
)

,

17



then its differential, having changed the signs, will be

∓dn+1S
dxn+1


(n + 1)α

qn+1

pn+2 + (nα + (n− 1)β)
qn−1

pn + ((n− 2)β + (n− 3)γ)
qn−3

pn−2

+ ((n− 4)γ + (n− 5)δ)
qn−5

pn−4 + etc.


§36 Therefore, from these series one will obtain the following sums of the
series exhibited in § 34

S = π · 1
p

−dS
dx

=
π2

1
· q

p2

ddS
24dx2 =

π3

2

(
2q2

p3 +
1
p

)
−d3S
6dx3 =

π4

6

(
6q3

p4 +
5q
p2

)
d4S

24dx4 =
π5

24

(
24q4

p5 +
28q2

p3 +
5
p

)
−d5S

120dx5 =
π6

120

(
120q5

p6 +
180q3

p4 +
61q
p2

)
d6S

720dx6 =
π7

720

(
720q6

p7 +
1320q4

p5 +
662q2

p3 +
61
p

)
−d7S

720dx6 =
π8

5040

(
5040q7

p8 +
10920q5

p6 +
7266q3

p4 +
1385q

p2

)
d8S

40320dx8 =
π9

40320

(
40320q8

p9 +
100800q6

p7 +
83664q4

p5 +
24568q2

p3 +
1385

p

)
etc.

§37 Let us treat the other series found above [§ 33] in the same way, i.e. the
series

π cos πx
sin πx

=
1
x
− 1

1− x
+

1
1 + x

− 1
2− x

+
1

2 + x
− 1

3− x
+ etc.

18



and, for the sake of brevity having put π cos πx
sin πx = T, the following summations

will result

T =
1
x
− 1

1− x
+

1
1 + x

− 1
2− x

+
1

2 + x
− etc.

−dT
dx

=
1
x2 +

1
(1− x)2 +

1
(1 + x)2 +

1
(2− x)2 +

1
(2 + x)2 + etc.

ddT
2dx2 =

1
x3 −

1
(1− x)3 +

1
(1 + x)3 −

1
(2− x)3 +

1
(2 + x)2 − etc.

−d3T
6d3x

=
1
x4 +

1
(1− x)4 +

1
(1 + x)4 +

1
(2− x)4 +

1
(2 + x)4 + etc.

d4T
24dx4 =

1
x5 −

1
(1− x)5 +

1
(1 + x)5 −

1
(2− x)5 +

1
(2 + x)5 − etc.

−d5T
120d5x

=
1
x6 +

1
(1− x)6 +

1
(1 + x)6 +

1
(2− x)6 +

1
(2 + x)6 + etc.

etc.,

where in the series of even powers all terms are positive, but in the series of
odd powers the signs + and − alternate.

§38 To find the values of these differentials, as before, let us put

sin πx = p and dq = −πpdx

that pp + qq = 1; it will be

dp = πqdx and dq = −πpdx.

Having added these values, it will be
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T = π · q
p

−dT
dx

= π2
(

qq
pp

+ 1
)
=

π2

pp
ddT
dx2 = π3

(
2q3

p3 +
2q
p

)
=

2π3q
p3

−d3T
dx3 = π4

(
6q4

p4 +
8qq
pp

+ 2
)
= π4

(
6qq
p4 +

2
pp

)
d4T
dx4 = π5

(
24q3

p5 +
16q
p3

)
−d5T
dx5 = π6

(
120q4

p6 +
120qq

p4 +
16
pp

)
d6T
dx6 = π7

(
720q5

p7 +
960q3

p5 +
272q

p3

)
−d7T
dx7 = π8

(
5040q6

p8 +
8400q4

p6 +
3696q2

q4 +
272
p2

)
d8T
dx8 = π9

(
40320q7

p9 +
80640q5

p7 +
48384q3

p5 +
7936q

p3

)
etc.

These formulas can easily be continued arbitrarily far. For, if

±dnT
dxn = πn+1

(
αqn−1

pn+1 +
βqn−3

pn−1 +
γqn−5

pn−3 +
δqn−7

pn−5 + etc.
)

,

the expression for the following differential will be

∓dn+1T
dxn+1 = πn+2

(
(n + 1)αqn

pn+2 +
(n− 1)(α + β)qn−2

pn +
(n− 3)(β + γ)qn−4

pn−2 + etc.
)

§39 Therefore, having put sin πx = p and cos πx = q, the series of powers
given in § 37 will have the following sums
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T = π · q
p

−dT
dx

= π2 1
pp

ddT
2dx2 = π3 q

p3

−d3T
6dx3 = π4

(
qq
π4 +

1
3pp

)
−d4T
24dx4 = π5

(
q3

p5 +
2q

3p3

)
−d5T

120dx5 = π6
(

q4

p6 +
3qq
p4 +

2
15pp

)
d6T

720dx6 = π7
(

q5

p7 +
4q3

3p5 +
17q

45p3

)
−d7T

5040dx7 = π8
(

q6

p8 +
5q4

3p6 +
11q2

15p4 +
17

315pp

)
d8T

40320dx8 = π9
(

q7

p9 +
6q5

3p7 +
6q3

5p5 +
62q

315p3

)
etc.

§40 Aside from these series, we found several others in the Introductio from
which others can be derived by means of differentiation in the same way.

For, we showed that

1
2x
− π

√
x

2x tan π
√

x
=

1
1− x

+
1

4− x
+

1
9− x

+
1

16− x
+

1
25− x

+ etc.

Let us put that the sum of this series is = S, so that

S =
1

2x
− π

2
√

x
· cos π

√
x

sin π
√

x
;

it will be

dS
dx

= − 1
2xx

+
π

4x
√

x
· cos π

√
x

sin π
√

x
+

ππ

4x(sin π
√

x)2 ,
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which expression therefore yields the sum of this series

1
(1− x)2 +

1
(4− x)2 +

1
(9− x)2 +

1
(16− x)2 +

1
(25− x)2 + etc.

Further, we also showed that

π

2
√

x
· e2π

√
x + 1

e2π
√

x − 1
− 1

2x
=

1
1 + x

+
1

4 + x
+

1
9 + x

+
1

16 + x
+ etc.

Therefore, if this sum is put = S, it will be

−dS
dx

=
1

(1 + x)2 +
1

(4 + x)2 +
1

(9 + x)2 +
1

(16 + x)2 + etc.

But

dS
dx

=
−π

4x
√

x
· e2π

√
x + 1

e2π
√

x − 1
− ππ

x
· e2π

√
x

(e2π
√

x − 1)2
+

1
2xx

.

Therefore, the sum of this series will be

−dS
dx

=
π

4x
√

x
· e2π

√
x + 1

e2π
√

x − 1
+

ππ

x
· e2π

√
x

(e2π
√

x − 1)2
− 1

2xx
.

And in like manner the sums of the following powers will be found by means
of further differentiation.

§41 If the value of a certain product composed of factors involving the
variable letter x was known, one will be able to find innumerable summable
series from it by means of the same method. For, let the value of this product

(1 + αx)(1 + βx)(1 + γx)(1 + δx)(1 + εx)etc.

be = S, a function of x, of course; taking logarithms it will be

log S = log(1 + αx) + log(1 + βx) + log(1 + γx) + log(1 + δx) + etc.

Now take the differentials; after division by dx it will be

dS
Sdx

=
α

1 + αx
+

β

1 + βx
+

γ

1 + γx
+

δ

1 + δx
+ etc.,
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from further differentiation of which series the sums of any powers of these
fractions will be found, precisely as we explained it in more detail in the
preceding examples.

§42 But, in the Introductio we exhibited several expressions we want to apply
this method to. If π is the arc of 180◦ of the circle whose radius is = 1, we
showed that

sin
mπ

2n
=

mπ

2n
· 4nn−mm

4nn
· 16nn−mm

16nn
· 26nn−mm

36nn
· etc.

cos
mπ

2n
=

nn−mm
nn

· 9nn−mm
9nn

· 25nn−mm
25nn

· 49nn−mm
49nn

· etc.

Let us put n = 1 and m = 2x, so that

sin πx = πx · 1− xx
1
· 4− xx

4
· 9− xx

9
· 16− xx

16
· etc.

or

sin πx = πx · 1− x
1
· 1 + x

1
· 2− x

2
· 2 + x

2
· 3− x

3
· 3 + x

3
· 4− x

4
· etc.

and

cos πx =
1− 4xx

1
· 9− 4xx

9
· 25− 4xx

25
· 49− 4xx

49
· etc.

or

cos πx =
1− 2x

1
· 1 + 2x

1
· 3− 2x

3
· 3 + 2x

3
· 5− 2x

5
· 5 + 2x

5
· etc.

Therefore, from these expressions, if one takes logarithms, it will be

log sin πx = log πx + log
1− x

1
+ log

1 + x
1

+ log
2− x

2
+ log

2 + x
2

+ log
3− x

3
+ etc.

log cos πx = log
1− 2x

1
+ log

1 + 2x
1

+ log
3− 2x

3
+ log

3 + 2x
3

+ log
5− 2x

5
+ etc.
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§43 Now let us take the differentials of these series of logarithms and, having
divided by dx everywhere, the first series will give

π cos πx
sin πx

=
1
x
− 1

1− x
+

1
1 + x

− 1
2− x

+
1

2 + x
− 1

3− x
+ etc.

which is the series we discussed in § 37. The other series on the other hand
will give

−π sin πx
cos πx

= − 2
1− 2x

+
2

1 + 2x
− 2

3− 2x
+

2
3 + 2x

− 2
5− 2x

+ etc.

Let us put 2x = z, so that x = z
2 , and divide by −2; it will be

π sin 1
2 πz

2 cos 1
2 πz

=
1

1− z
− 1

1 + z
+

1
3− z

− 1
3 + z

+
1

5− z
− etc.

But, since

sin
1
2

πz =

√
1− cos πz

2
and cos

1
2

πz =

√
1 + cos πz

2
,

it will be

π
√

1− cos πz√
1 + cos πz

=
2

1− z
− 2

1 + z
+

2
3− z

+
2

5− z
− etc.

or, writing x instead of z,

π
√

1− cos πx√
1 + cos πx

=
2

1− x
− 2

1 + x
+

2
3− x

− 2
3 + x

+
2

5− x
− etc.

Add this series to the one found first

π cos πx
sin πx

=
1
x
− 1

1− x
+

1
1 + x

− 1
2− x

+
1

2 + x
− 1

3− x
+ etc.

and one will find the sum of this series

1
x
+

1
1− x

− 1
1 + x

− 1
2− x

+
1

2 + x
+

1
3− x

− 1
3 + x

− etc.

to be = π
√

1−cos πx√
1+cos π

+ π cos πx
sin πx . But this fraction

√
1−cos πx√
1+cos πx

, if the numerator and

denominator are multiplied by
√

1− cos πx, goes over into 1−cos πx
sin π . Therefore,

the sum of the series will be = π
sin πx , which is the series we considered in §

34; therefore, we will not prosecute this any further.
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